
Package: ig.degree.betweenness (via
r-universe)
November 22, 2024

Type Package

Title ``Smith-Pittman Community Detection Algorithm for 'igraph'
Objects (2024)''

Version 0.1.0

Description Implements the ``Smith-Pittman'' community detection
algorithm for network analysis using 'igraph' objects. This
algorithm combines node degree and betweenness centrality
measures to identify communities within networks, with a
gradient evident in social partitioning. The package provides
functions for community detection, visualization, and analysis
of the resulting community structure. Methods are based on
results from Smith, Pittman and Xu (2024)
<doi:10.48550/arXiv.2411.01394>.

License MIT + file LICENSE

URL https://github.com/benyamindsmith/ig.degree.betweenness

BugReports https://github.com/benyamindsmith/ig.degree.betweenness/issues

Encoding UTF-8

LazyData true

Imports igraph, igraphdata, rlist, BBmisc, qgraph

RoxygenNote 7.3.2

Suggests knitr, rmarkdown

Config/pak/sysreqs libglpk-dev make libicu-dev libjpeg-dev libpng-dev
libxml2-dev

Repository https://benyamindsmith.r-universe.dev

RemoteUrl https://github.com/benyamindsmith/ig.degree.betweenness

RemoteRef HEAD

RemoteSha e79bc89122a394deb75dc75cd53c359c6b6241c0

1

https://doi.org/10.48550/arXiv.2411.01394
https://github.com/benyamindsmith/ig.degree.betweenness
https://github.com/benyamindsmith/ig.degree.betweenness/issues

2 cluster_degree_betweenness

Contents

cluster_degree_betweenness . 2
plot_simplified_edgeplot . 3
prep_unlabeled_graph . 4

Index 6

cluster_degree_betweenness

Community structure detection based on node degree centrality and
edge betweenness

Description

Referred to as the "Smith-Pittman" algorithm in Smith et al (2024). This algorithm detects commu-
nities by calculating the degree centrality measures of nodes and edge betweenness.

Usage

cluster_degree_betweenness(graph)

Arguments

graph The graph to analyze

Details

This can be thought of as an alternative version of igraph::cluster_edge_betweeness().

The function iteratively removes edges based on their betweenness centrality and the degree of
their adjacent nodes. At each iteration, it identifies the edge with the highest betweenness centrality
among those connected to nodes with the highest degree.It then removes that edge and recalculates
the modularity of the resulting graph. The process continues until all edges have been assessed
or until no further subgraph can be created with the optimal number of communites being chosen
based on maximization of modularity.

Value

An igraph "communities" object with detected communities via the Smith-Pittman algorithm.

References

Smith et al (2024) "Centrality in Collaboration: A Novel Algorithm for Social Partitioning Gradi-
ents in Community Detection for Multiple Oncology Clinical Trial Enrollments", <doi:10.48550/arXiv.2411.01394>

plot_simplified_edgeplot 3

Examples

library(igraphdata)
data("karate")
ndb <- cluster_degree_betweenness(karate)
plot(
ndb,
karate,
main= "Degree-Betweenness Clustering"
)

ndb

UNLABELED GRAPH EXAMPLE

data("UKfaculty")
Making graph undirected so it looks nicer when its plotted
uk_faculty <- prep_unlabeled_graph(UKfaculty) |>

igraph::as.undirected()

ndb <- cluster_degree_betweenness(uk_faculty)

plot(
ndb,
uk_faculty,
main= "Smith-Pittman Clustering for UK Faculty"

)

plot_simplified_edgeplot

Plot Simplified Edgeplot

Description

This function generates a simplified edge plot of an igraph object, optionally highlighting commu-
nities if provided.

Usage

plot_simplified_edgeplot(graph, communities = NULL, edge.arrow.size = 0.2, ...)

Arguments

graph igraph object

communities optional; A communities object
edge.arrow.size

edge.arrow size arg. See ?igraph::plot.igraph for more details

... other arguments to be passed to the plot() function

4 prep_unlabeled_graph

Details

This function is ideally for networks with a low number of nodes having varying numbers of con-
nection and self loops. See the example for a better visual understanding.

Value

No return value, called for side effects.

Examples

Load the igraph package
library(igraph)
library(ig.degree.betweenness)
Set parameters
num_nodes <- 15 # Number of nodes (adjust as needed)
initial_edges <- 1 # Starting edges for preferential attachment

Create a directed, scale-free network using the Barabási-Albert model
g <- sample_pa(n = num_nodes, m = initial_edges, directed = TRUE)

Introduce additional edges to high-degree nodes to accentuate popularity differences
num_extra_edges <- 350 # Additional edges to create more popular nodes
set.seed(123) # For reproducibility

for (i in 1:num_extra_edges) {
Sample nodes with probability proportional to their degree (to reinforce popularity)
from <- sample(V(g), 1, prob = degree(g, mode = "in") + 1) # +1 to avoid zero probabilities
to <- sample(V(g), 1)

Ensure we don't add the same edge repeatedly unless intended, allowing self-loops
g <- add_edges(g, c(from, to))

}

Add self-loops to a subset of nodes
num_self_loops <- 5
for (i in 1:num_self_loops) {

node <- sample(V(g), 1)
g <- add_edges(g, c(node, node))

}

g_ <- ig.degree.betweenness::prep_unlabeled_graph(g)

ig.degree.betweenness::plot_simplified_edgeplot(g_,main="Simulated Data")

prep_unlabeled_graph Prepared Unlabeled Graph to work with Degree-Betweenness Algo-
rithm

prep_unlabeled_graph 5

Description

Presently, cluster_degree_betweenness() function only works with labeled graphs. prep_unlabeled_graph()
is a utility function that gives an unlabeled graph labels which are string values of their vertices.

Usage

prep_unlabeled_graph(graph)

Arguments

graph an unlabeled graph.

Value

An "igraph" object with named vertices.

See Also

[cluster_degree_betweenness()] which this function aids.

Examples

library(igraph)
library(igraphdata)
library(ig.degree.betweenness)
data("UKfaculty")
Making graph undirected so it looks nicer when its plotted
uk_faculty <- prep_unlabeled_graph(UKfaculty) |>

as.undirected()

ndb <- cluster_degree_betweenness(uk_faculty)

plot(
ndb,
uk_faculty,
main= "Node Degree Clustering"
)

ndb

Index

cluster_degree_betweenness, 2

plot_simplified_edgeplot, 3
prep_unlabeled_graph, 4

6

	cluster_degree_betweenness
	plot_simplified_edgeplot
	prep_unlabeled_graph
	Index

